show this identity with trigometric
$begingroup$
I sent a post earlier. Follow is an original problem. I got an error identity from a previous calculation error. Now there should be no problem.
Problem::
let $x,yin (0,dfrac{pi}{2})$. show that
$$dfrac{sin{(x+y)}tan{x}-cos{(x+y)}}{sin{(x+y)}tan{y}-cos{(x+y)}}=dfrac{cos{(2x+y)}cos{y}}{cos{(x+2y)}cos{x}}$$
This identity comes from the fact that I deal with a geometric problem and use trigonometric functions to calculate an identity that needs to be proved.Thanks
trigonometry
$endgroup$
add a comment |
$begingroup$
I sent a post earlier. Follow is an original problem. I got an error identity from a previous calculation error. Now there should be no problem.
Problem::
let $x,yin (0,dfrac{pi}{2})$. show that
$$dfrac{sin{(x+y)}tan{x}-cos{(x+y)}}{sin{(x+y)}tan{y}-cos{(x+y)}}=dfrac{cos{(2x+y)}cos{y}}{cos{(x+2y)}cos{x}}$$
This identity comes from the fact that I deal with a geometric problem and use trigonometric functions to calculate an identity that needs to be proved.Thanks
trigonometry
$endgroup$
1
$begingroup$
This version seems to be true. :) (Note: You should not delete a question that has received an answer. Doing so is inconsiderate to the answerer who has taken valuable time to respond to your question.)
$endgroup$
– Blue
3 hours ago
add a comment |
$begingroup$
I sent a post earlier. Follow is an original problem. I got an error identity from a previous calculation error. Now there should be no problem.
Problem::
let $x,yin (0,dfrac{pi}{2})$. show that
$$dfrac{sin{(x+y)}tan{x}-cos{(x+y)}}{sin{(x+y)}tan{y}-cos{(x+y)}}=dfrac{cos{(2x+y)}cos{y}}{cos{(x+2y)}cos{x}}$$
This identity comes from the fact that I deal with a geometric problem and use trigonometric functions to calculate an identity that needs to be proved.Thanks
trigonometry
$endgroup$
I sent a post earlier. Follow is an original problem. I got an error identity from a previous calculation error. Now there should be no problem.
Problem::
let $x,yin (0,dfrac{pi}{2})$. show that
$$dfrac{sin{(x+y)}tan{x}-cos{(x+y)}}{sin{(x+y)}tan{y}-cos{(x+y)}}=dfrac{cos{(2x+y)}cos{y}}{cos{(x+2y)}cos{x}}$$
This identity comes from the fact that I deal with a geometric problem and use trigonometric functions to calculate an identity that needs to be proved.Thanks
trigonometry
trigonometry
asked 3 hours ago
function sugfunction sug
3381438
3381438
1
$begingroup$
This version seems to be true. :) (Note: You should not delete a question that has received an answer. Doing so is inconsiderate to the answerer who has taken valuable time to respond to your question.)
$endgroup$
– Blue
3 hours ago
add a comment |
1
$begingroup$
This version seems to be true. :) (Note: You should not delete a question that has received an answer. Doing so is inconsiderate to the answerer who has taken valuable time to respond to your question.)
$endgroup$
– Blue
3 hours ago
1
1
$begingroup$
This version seems to be true. :) (Note: You should not delete a question that has received an answer. Doing so is inconsiderate to the answerer who has taken valuable time to respond to your question.)
$endgroup$
– Blue
3 hours ago
$begingroup$
This version seems to be true. :) (Note: You should not delete a question that has received an answer. Doing so is inconsiderate to the answerer who has taken valuable time to respond to your question.)
$endgroup$
– Blue
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
$$begin{align}
sin(x+y)tan x - cos(x+y) &= phantom{-}frac{1}{cos x}left(;sin(x+y) sin x - cos(x+y)cos x;right) \[4pt]
&= -frac1{cos x}cosleft((x+y)+xright) \[4pt]
&= -frac1{cos x}cosleft(2x+yright)
end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145988%2fshow-this-identity-with-trigometric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$begin{align}
sin(x+y)tan x - cos(x+y) &= phantom{-}frac{1}{cos x}left(;sin(x+y) sin x - cos(x+y)cos x;right) \[4pt]
&= -frac1{cos x}cosleft((x+y)+xright) \[4pt]
&= -frac1{cos x}cosleft(2x+yright)
end{align}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$begin{align}
sin(x+y)tan x - cos(x+y) &= phantom{-}frac{1}{cos x}left(;sin(x+y) sin x - cos(x+y)cos x;right) \[4pt]
&= -frac1{cos x}cosleft((x+y)+xright) \[4pt]
&= -frac1{cos x}cosleft(2x+yright)
end{align}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$begin{align}
sin(x+y)tan x - cos(x+y) &= phantom{-}frac{1}{cos x}left(;sin(x+y) sin x - cos(x+y)cos x;right) \[4pt]
&= -frac1{cos x}cosleft((x+y)+xright) \[4pt]
&= -frac1{cos x}cosleft(2x+yright)
end{align}$$
$endgroup$
Hint:
$$begin{align}
sin(x+y)tan x - cos(x+y) &= phantom{-}frac{1}{cos x}left(;sin(x+y) sin x - cos(x+y)cos x;right) \[4pt]
&= -frac1{cos x}cosleft((x+y)+xright) \[4pt]
&= -frac1{cos x}cosleft(2x+yright)
end{align}$$
answered 2 hours ago
BlueBlue
49k870156
49k870156
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3145988%2fshow-this-identity-with-trigometric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
This version seems to be true. :) (Note: You should not delete a question that has received an answer. Doing so is inconsiderate to the answerer who has taken valuable time to respond to your question.)
$endgroup$
– Blue
3 hours ago