Showing a conditional statement is a tautology without using a truth table.












2












$begingroup$


I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



[(p→q)∧(q→r)] → (p→r)



=> ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



=> [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



=> [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



I can't seem to figure out what comes after this step. Can someone help me?










share|cite|improve this question







New contributor




Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    2












    $begingroup$


    I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



    [(p→q)∧(q→r)] → (p→r)



    => ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



    => [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



    => [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



    I can't seem to figure out what comes after this step. Can someone help me?










    share|cite|improve this question







    New contributor




    Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      2












      2








      2


      1



      $begingroup$


      I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



      [(p→q)∧(q→r)] → (p→r)



      => ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



      => [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



      => [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



      I can't seem to figure out what comes after this step. Can someone help me?










      share|cite|improve this question







      New contributor




      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I wanted to show that [(p→q)∧(q→r)]→(p→r) is a tautology without using a truth table. This is what I got so far:



      [(p→q)∧(q→r)] → (p→r)



      => ¬[(¬p v q) ∧ (¬q v r)] v (¬pvr) (logical equivalence)



      => [¬(¬p v q) v ¬(¬qvr)] v (¬pvr) (demorgan's law)



      => [(p ∧ ¬q) v (q∧¬r)] v (¬pvr) (demogran's law)



      I can't seem to figure out what comes after this step. Can someone help me?







      discrete-mathematics proof-verification logic






      share|cite|improve this question







      New contributor




      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 5 hours ago









      NevNev

      183




      183




      New contributor




      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Nev is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          Notice that



          $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



          is one big disjunction, so you can drop parentheses:



          $ (p land neg q) lor (qland neg r) lor neg plor r$



          Now, if you have:



          Reduction



          $p lor (neg p land q) equiv p lor q$



          then you can apply that:



          $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



          $neg q lor q lor neg p lor r equiv$



          $top lor neg p lor r equiv$



          $top$



          But if you don't have Reduction:



          $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



          $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



          $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



          $neg q lor neg p lor q lor r$



          $top lor neg p lor r equiv$



          $top$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much, makes a lot of sense now
            $endgroup$
            – Nev
            2 hours ago










          • $begingroup$
            @nev you're welcome!
            $endgroup$
            – Bram28
            2 hours ago



















          1












          $begingroup$

          Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
          begin{align*}
          &(p wedge neg q) vee (q wedge neg r)\
          &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
          &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
          &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
          &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
          end{align*}

          Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



          So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
          begin{align*}
          &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
          end{align*}

          Again both halves of this can be manipulated to get $top$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$


            I can't seem to figure out what comes after this step. Can someone help me?




            Yes.



            $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
            \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              You can use Double Distribution to get
              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
              $q lor lnot q$ is a Tautology so this becomes
              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
              which by distribution is
              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
              Association gives
              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
              Distribution again gives
              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
              $q land lnot q$ is a contradiction so this becomes
              $$(lnot r land p)lor (lnot p lor r)$$
              Which by DeMorgan's Law is
              $$(lnot r land p)lor lnot(lnot r land p)$$
              Which is a tautology.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thanks for the help!!
                $endgroup$
                – Nev
                2 hours ago











              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });






              Nev is a new contributor. Be nice, and check out our Code of Conduct.










              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086499%2fshowing-a-conditional-statement-is-a-tautology-without-using-a-truth-table%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                2 hours ago










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                2 hours ago
















              1












              $begingroup$

              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                2 hours ago










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                2 hours ago














              1












              1








              1





              $begingroup$

              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$






              share|cite|improve this answer









              $endgroup$



              Notice that



              $ [(p land neg q) lor (qland neg r)] lor (neg plor r)$



              is one big disjunction, so you can drop parentheses:



              $ (p land neg q) lor (qland neg r) lor neg plor r$



              Now, if you have:



              Reduction



              $p lor (neg p land q) equiv p lor q$



              then you can apply that:



              $ (p land neg q) lor (qland neg r) lor neg plor r equiv$



              $neg q lor q lor neg p lor r equiv$



              $top lor neg p lor r equiv$



              $top$



              But if you don't have Reduction:



              $ (p land neg q) lor (qland neg r) lor neg p lor r equiv$



              $((p lor neg p) land (neg q lor neg p)) lor ((q lor r) land (neg r lor r)) equiv$



              $(top land (neg q lor neg p)) lor ((q lor r) land top) equiv$



              $neg q lor neg p lor q lor r$



              $top lor neg p lor r equiv$



              $top$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 2 hours ago









              Bram28Bram28

              60.8k44590




              60.8k44590












              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                2 hours ago










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                2 hours ago


















              • $begingroup$
                Thank you so much, makes a lot of sense now
                $endgroup$
                – Nev
                2 hours ago










              • $begingroup$
                @nev you're welcome!
                $endgroup$
                – Bram28
                2 hours ago
















              $begingroup$
              Thank you so much, makes a lot of sense now
              $endgroup$
              – Nev
              2 hours ago




              $begingroup$
              Thank you so much, makes a lot of sense now
              $endgroup$
              – Nev
              2 hours ago












              $begingroup$
              @nev you're welcome!
              $endgroup$
              – Bram28
              2 hours ago




              $begingroup$
              @nev you're welcome!
              $endgroup$
              – Bram28
              2 hours ago











              1












              $begingroup$

              Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
              begin{align*}
              &(p wedge neg q) vee (q wedge neg r)\
              &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
              &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
              &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
              &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
              end{align*}

              Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



              So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
              begin{align*}
              &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
              end{align*}

              Again both halves of this can be manipulated to get $top$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
                begin{align*}
                &(p wedge neg q) vee (q wedge neg r)\
                &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
                &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
                &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
                &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
                end{align*}

                Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



                So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
                begin{align*}
                &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
                end{align*}

                Again both halves of this can be manipulated to get $top$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
                  begin{align*}
                  &(p wedge neg q) vee (q wedge neg r)\
                  &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
                  &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
                  &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
                  &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
                  end{align*}

                  Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



                  So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
                  begin{align*}
                  &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
                  end{align*}

                  Again both halves of this can be manipulated to get $top$.






                  share|cite|improve this answer









                  $endgroup$



                  Expand the expression $(p wedge neg q) vee (q wedge neg r)$ by distributing the $vee$ over the $wedge$:
                  begin{align*}
                  &(p wedge neg q) vee (q wedge neg r)\
                  &[(p wedge neg q) vee q] wedge [(p wedge neg q) vee neg r]\
                  &[(p vee q ) wedge (neg q vee q)] wedge [(p vee neg r ) wedge (neg q vee neg r)]\
                  &[(p vee q) wedge top ] wedge[(p vee neg r) wedge (neg q vee neg r)]\
                  &(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)].
                  end{align*}

                  Now overall we have ${(p vee q) wedge [(p vee neg r) wedge (neg q vee neg r)]}vee (neg p vee r)$. If we distribute the $vee$ over the $wedge$, we get $[(p vee q) vee ( neg p vee r)]wedge{[(p vee neg r) wedge (neg q vee neg r)]vee(neg p vee r)}$. Focusing on the first half, you can manipulate $(p vee q) vee ( neg p vee r)$ to get $top$ by shuffling parentheses around to get $(p vee neg p) vee (q vee r)$ (I'll leave that to you).



                  So we are left with $[(p vee neg r) wedge (neg q vee neg r)] vee (neg p vee r)$. Again let's distribute the $vee$ over the $wedge$:
                  begin{align*}
                  &[(p vee neg r) vee (neg p vee r)] wedge [(neg q vee neg r) vee (neg p vee r)].
                  end{align*}

                  Again both halves of this can be manipulated to get $top$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  kccukccu

                  9,80811228




                  9,80811228























                      1












                      $begingroup$


                      I can't seem to figure out what comes after this step. Can someone help me?




                      Yes.



                      $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                      \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$


                        I can't seem to figure out what comes after this step. Can someone help me?




                        Yes.



                        $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                        \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$


                          I can't seem to figure out what comes after this step. Can someone help me?




                          Yes.



                          $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                          \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$






                          share|cite|improve this answer









                          $endgroup$




                          I can't seem to figure out what comes after this step. Can someone help me?




                          Yes.



                          $$begin{align}vdotsquad\iff&~big((p land lnot q) lor (qlandlnot r)big) lor (lnot plor r)
                          \[1ex]iff &~big(lnot plor (pland lnot q)big)lor big(rlor (lnot rland q)big)&quadtextsf{(Commutation and Association)}\vdotsquadend{align}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 4 hours ago









                          Graham KempGraham Kemp

                          85.1k43378




                          85.1k43378























                              1












                              $begingroup$

                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.






                              share|cite|improve this answer









                              $endgroup$













                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                2 hours ago
















                              1












                              $begingroup$

                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.






                              share|cite|improve this answer









                              $endgroup$













                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                2 hours ago














                              1












                              1








                              1





                              $begingroup$

                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.






                              share|cite|improve this answer









                              $endgroup$



                              You can use Double Distribution to get
                              $$[(p lor q)land(q lor lnot q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              $q lor lnot q$ is a Tautology so this becomes
                              $$[(p lor q)land(lnot q lor lnot r)land(p lor lnot r)]lor (lnot p lor r)$$
                              which by distribution is
                              $$[(p lor q)land[lnot rland(p lor lnot q)]]lor (lnot p lor r)$$
                              Association gives
                              $$[lnot r land [(p lor q)land(p lor lnot q)]]lor (lnot p lor r)$$
                              Distribution again gives
                              $$[lnot r land [p lor(q land lnot q)]]lor (lnot p lor r)$$
                              $q land lnot q$ is a contradiction so this becomes
                              $$(lnot r land p)lor (lnot p lor r)$$
                              Which by DeMorgan's Law is
                              $$(lnot r land p)lor lnot(lnot r land p)$$
                              Which is a tautology.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 3 hours ago









                              Erik ParkinsonErik Parkinson

                              8899




                              8899












                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                2 hours ago


















                              • $begingroup$
                                Thanks for the help!!
                                $endgroup$
                                – Nev
                                2 hours ago
















                              $begingroup$
                              Thanks for the help!!
                              $endgroup$
                              – Nev
                              2 hours ago




                              $begingroup$
                              Thanks for the help!!
                              $endgroup$
                              – Nev
                              2 hours ago










                              Nev is a new contributor. Be nice, and check out our Code of Conduct.










                              draft saved

                              draft discarded


















                              Nev is a new contributor. Be nice, and check out our Code of Conduct.













                              Nev is a new contributor. Be nice, and check out our Code of Conduct.












                              Nev is a new contributor. Be nice, and check out our Code of Conduct.
















                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086499%2fshowing-a-conditional-statement-is-a-tautology-without-using-a-truth-table%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Loup dans la culture

                              How to solve the problem of ntp “Unable to contact time server” from KDE?

                              ASUS Zenbook UX433/UX333 — Configure Touchpad-embedded numpad on Linux