Why must traveling waves have the same amplitude to form a standing wave?












3












$begingroup$


I understand the reason for which the wavelengths of the incident and reflected waves must be equal: otherwise, the interference at any fixed position would be constructive at some instants and destructive at others. But why can't two waves of differing amplitude produce a standing wave?










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    I understand the reason for which the wavelengths of the incident and reflected waves must be equal: otherwise, the interference at any fixed position would be constructive at some instants and destructive at others. But why can't two waves of differing amplitude produce a standing wave?










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      2



      $begingroup$


      I understand the reason for which the wavelengths of the incident and reflected waves must be equal: otherwise, the interference at any fixed position would be constructive at some instants and destructive at others. But why can't two waves of differing amplitude produce a standing wave?










      share|cite|improve this question









      $endgroup$




      I understand the reason for which the wavelengths of the incident and reflected waves must be equal: otherwise, the interference at any fixed position would be constructive at some instants and destructive at others. But why can't two waves of differing amplitude produce a standing wave?







      waves






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 6 hours ago









      Julia KimJulia Kim

      374




      374






















          2 Answers
          2






          active

          oldest

          votes


















          12












          $begingroup$

          If the travelling waves have the same amplitude then the net rate of transfer of energy at any point is zero and there are stationary positions where the standing wave has zero amplitude - nodes.



          In this animation taken from Acoustics and Vibration Animations the amplitude of the reflected wave is the same as that of the incident wave.



          enter image description here



          If the travelling waves are of unequal amplitude then there is a net transfer of energy.

          If the amplitudes of the two traveling waves are $A$ and $B$ with $A>B$ then you can think of the superposition of the two travelling waves as being the sum of a standing wave formed by two travelling waves of amplitude $B$ and a travelling wave of amplitude $A-B$.



          In this animation the amplitude of the left travelling (incident) wave is larger than that of the right travelling (reflected) wave and so there is a net transfer of energy from left to right.
          enter image description here



          If you look carefully using a vertical ruler as a marker you will observe positions of maximum displacement and positions of minimum (but not zero) displacement.



          The graph bottom left of this video shows this maximum and minimum displacement by overlapping the wave profiles as time progresses.



          enter image description here






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            You can think of this in a different way. Suppose you have a standing wave made from two oppositely-directed waves with equal amplitudes. What if amplitude of one of them reduces a bit? You think the sum should still be a standing wave. OK, but what if you continue reducing the amplitude down to $0$? In this case you'll be left only with a single traveling wave, which is not a standing wave anymore. At which point should the standing wave switch to traveling one? The answer is simple: it stops being pure standing wave at the moment when the amplitudes of the two oppositely-traveling components become different. Instead, you have a superposition of a traveling wave and a standing one.






            share|cite









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "151"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466359%2fwhy-must-traveling-waves-have-the-same-amplitude-to-form-a-standing-wave%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              12












              $begingroup$

              If the travelling waves have the same amplitude then the net rate of transfer of energy at any point is zero and there are stationary positions where the standing wave has zero amplitude - nodes.



              In this animation taken from Acoustics and Vibration Animations the amplitude of the reflected wave is the same as that of the incident wave.



              enter image description here



              If the travelling waves are of unequal amplitude then there is a net transfer of energy.

              If the amplitudes of the two traveling waves are $A$ and $B$ with $A>B$ then you can think of the superposition of the two travelling waves as being the sum of a standing wave formed by two travelling waves of amplitude $B$ and a travelling wave of amplitude $A-B$.



              In this animation the amplitude of the left travelling (incident) wave is larger than that of the right travelling (reflected) wave and so there is a net transfer of energy from left to right.
              enter image description here



              If you look carefully using a vertical ruler as a marker you will observe positions of maximum displacement and positions of minimum (but not zero) displacement.



              The graph bottom left of this video shows this maximum and minimum displacement by overlapping the wave profiles as time progresses.



              enter image description here






              share|cite|improve this answer











              $endgroup$


















                12












                $begingroup$

                If the travelling waves have the same amplitude then the net rate of transfer of energy at any point is zero and there are stationary positions where the standing wave has zero amplitude - nodes.



                In this animation taken from Acoustics and Vibration Animations the amplitude of the reflected wave is the same as that of the incident wave.



                enter image description here



                If the travelling waves are of unequal amplitude then there is a net transfer of energy.

                If the amplitudes of the two traveling waves are $A$ and $B$ with $A>B$ then you can think of the superposition of the two travelling waves as being the sum of a standing wave formed by two travelling waves of amplitude $B$ and a travelling wave of amplitude $A-B$.



                In this animation the amplitude of the left travelling (incident) wave is larger than that of the right travelling (reflected) wave and so there is a net transfer of energy from left to right.
                enter image description here



                If you look carefully using a vertical ruler as a marker you will observe positions of maximum displacement and positions of minimum (but not zero) displacement.



                The graph bottom left of this video shows this maximum and minimum displacement by overlapping the wave profiles as time progresses.



                enter image description here






                share|cite|improve this answer











                $endgroup$
















                  12












                  12








                  12





                  $begingroup$

                  If the travelling waves have the same amplitude then the net rate of transfer of energy at any point is zero and there are stationary positions where the standing wave has zero amplitude - nodes.



                  In this animation taken from Acoustics and Vibration Animations the amplitude of the reflected wave is the same as that of the incident wave.



                  enter image description here



                  If the travelling waves are of unequal amplitude then there is a net transfer of energy.

                  If the amplitudes of the two traveling waves are $A$ and $B$ with $A>B$ then you can think of the superposition of the two travelling waves as being the sum of a standing wave formed by two travelling waves of amplitude $B$ and a travelling wave of amplitude $A-B$.



                  In this animation the amplitude of the left travelling (incident) wave is larger than that of the right travelling (reflected) wave and so there is a net transfer of energy from left to right.
                  enter image description here



                  If you look carefully using a vertical ruler as a marker you will observe positions of maximum displacement and positions of minimum (but not zero) displacement.



                  The graph bottom left of this video shows this maximum and minimum displacement by overlapping the wave profiles as time progresses.



                  enter image description here






                  share|cite|improve this answer











                  $endgroup$



                  If the travelling waves have the same amplitude then the net rate of transfer of energy at any point is zero and there are stationary positions where the standing wave has zero amplitude - nodes.



                  In this animation taken from Acoustics and Vibration Animations the amplitude of the reflected wave is the same as that of the incident wave.



                  enter image description here



                  If the travelling waves are of unequal amplitude then there is a net transfer of energy.

                  If the amplitudes of the two traveling waves are $A$ and $B$ with $A>B$ then you can think of the superposition of the two travelling waves as being the sum of a standing wave formed by two travelling waves of amplitude $B$ and a travelling wave of amplitude $A-B$.



                  In this animation the amplitude of the left travelling (incident) wave is larger than that of the right travelling (reflected) wave and so there is a net transfer of energy from left to right.
                  enter image description here



                  If you look carefully using a vertical ruler as a marker you will observe positions of maximum displacement and positions of minimum (but not zero) displacement.



                  The graph bottom left of this video shows this maximum and minimum displacement by overlapping the wave profiles as time progresses.



                  enter image description here







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 5 hours ago

























                  answered 5 hours ago









                  FarcherFarcher

                  50.9k338107




                  50.9k338107























                      0












                      $begingroup$

                      You can think of this in a different way. Suppose you have a standing wave made from two oppositely-directed waves with equal amplitudes. What if amplitude of one of them reduces a bit? You think the sum should still be a standing wave. OK, but what if you continue reducing the amplitude down to $0$? In this case you'll be left only with a single traveling wave, which is not a standing wave anymore. At which point should the standing wave switch to traveling one? The answer is simple: it stops being pure standing wave at the moment when the amplitudes of the two oppositely-traveling components become different. Instead, you have a superposition of a traveling wave and a standing one.






                      share|cite









                      $endgroup$


















                        0












                        $begingroup$

                        You can think of this in a different way. Suppose you have a standing wave made from two oppositely-directed waves with equal amplitudes. What if amplitude of one of them reduces a bit? You think the sum should still be a standing wave. OK, but what if you continue reducing the amplitude down to $0$? In this case you'll be left only with a single traveling wave, which is not a standing wave anymore. At which point should the standing wave switch to traveling one? The answer is simple: it stops being pure standing wave at the moment when the amplitudes of the two oppositely-traveling components become different. Instead, you have a superposition of a traveling wave and a standing one.






                        share|cite









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          You can think of this in a different way. Suppose you have a standing wave made from two oppositely-directed waves with equal amplitudes. What if amplitude of one of them reduces a bit? You think the sum should still be a standing wave. OK, but what if you continue reducing the amplitude down to $0$? In this case you'll be left only with a single traveling wave, which is not a standing wave anymore. At which point should the standing wave switch to traveling one? The answer is simple: it stops being pure standing wave at the moment when the amplitudes of the two oppositely-traveling components become different. Instead, you have a superposition of a traveling wave and a standing one.






                          share|cite









                          $endgroup$



                          You can think of this in a different way. Suppose you have a standing wave made from two oppositely-directed waves with equal amplitudes. What if amplitude of one of them reduces a bit? You think the sum should still be a standing wave. OK, but what if you continue reducing the amplitude down to $0$? In this case you'll be left only with a single traveling wave, which is not a standing wave anymore. At which point should the standing wave switch to traveling one? The answer is simple: it stops being pure standing wave at the moment when the amplitudes of the two oppositely-traveling components become different. Instead, you have a superposition of a traveling wave and a standing one.







                          share|cite












                          share|cite



                          share|cite










                          answered 1 min ago









                          RuslanRuslan

                          9,55343172




                          9,55343172






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466359%2fwhy-must-traveling-waves-have-the-same-amplitude-to-form-a-standing-wave%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Loup dans la culture

                              How to solve the problem of ntp “Unable to contact time server” from KDE?

                              Connection limited (no internet access)