Existence of subset with given Hausdorff dimension












6












$begingroup$


Let $Asubseteq mathbb{R}$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




In case this is true, could you provide a reference for this statement?



Added: Actually I am happy if $A$ is compact.










share|cite|improve this question











$endgroup$

















    6












    $begingroup$


    Let $Asubseteq mathbb{R}$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




    For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




    In case this is true, could you provide a reference for this statement?



    Added: Actually I am happy if $A$ is compact.










    share|cite|improve this question











    $endgroup$















      6












      6








      6





      $begingroup$


      Let $Asubseteq mathbb{R}$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




      For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




      In case this is true, could you provide a reference for this statement?



      Added: Actually I am happy if $A$ is compact.










      share|cite|improve this question











      $endgroup$




      Let $Asubseteq mathbb{R}$ be Lebesgue-measurable and let $0<alpha<1$ be its Hausdorff dimension.




      For a given $0<beta <alpha$ can we find a subset $Bsubset A$ with Hausdorff dimension $beta$?




      In case this is true, could you provide a reference for this statement?



      Added: Actually I am happy if $A$ is compact.







      reference-request geometric-measure-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago







      Severin Schraven

















      asked 6 hours ago









      Severin SchravenSeverin Schraven

      21418




      21418






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            3 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            1 hour ago



















          4












          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $Asubsetmathbb{R}^n$ has non-$sigma$-finite measure $mathcal{H}^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcal{H}^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$









          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            4 hours ago








          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            4 hours ago












          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            3 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "504"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325532%2fexistence-of-subset-with-given-hausdorff-dimension%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            3 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            1 hour ago
















          3












          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            3 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            1 hour ago














          3












          3








          3





          $begingroup$

          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.






          share|cite|improve this answer









          $endgroup$



          Here is a partial answer. First of all, $dim_H (A) = alpha$ iff $ H^k(A)=infty$ for all $k<beta$ and $H^k(A) = 0$ for all $k>beta$. Then $H^alpha(A) = infty$ for all $alpha in (0,beta)$. If $A$ is closed then by Theorem 5.4 from The Geometry of Fractal Sets by Falconer there is a compact $Ksubset A$ such that $0<H^alpha(K)<infty$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 4 hours ago









          SkeeveSkeeve

          30914




          30914












          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            3 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            1 hour ago


















          • $begingroup$
            That's exactly what I was looking for, thanks very much.
            $endgroup$
            – Severin Schraven
            3 hours ago










          • $begingroup$
            Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
            $endgroup$
            – Severin Schraven
            1 hour ago
















          $begingroup$
          That's exactly what I was looking for, thanks very much.
          $endgroup$
          – Severin Schraven
          3 hours ago




          $begingroup$
          That's exactly what I was looking for, thanks very much.
          $endgroup$
          – Severin Schraven
          3 hours ago












          $begingroup$
          Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
          $endgroup$
          – Severin Schraven
          1 hour ago




          $begingroup$
          Actually it is worth mentioning that in the same reference in Theorem 5.6, this is generalized to Souslin spaces.
          $endgroup$
          – Severin Schraven
          1 hour ago











          4












          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $Asubsetmathbb{R}^n$ has non-$sigma$-finite measure $mathcal{H}^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcal{H}^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$









          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            4 hours ago








          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            4 hours ago












          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            3 hours ago
















          4












          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $Asubsetmathbb{R}^n$ has non-$sigma$-finite measure $mathcal{H}^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcal{H}^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$









          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            4 hours ago








          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            4 hours ago












          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            3 hours ago














          4












          4








          4





          $begingroup$

          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $Asubsetmathbb{R}^n$ has non-$sigma$-finite measure $mathcal{H}^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcal{H}^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.






          share|cite|improve this answer











          $endgroup$



          The answer is yes under the additional assumption that the set is compact and I do not know what happens in the general case. The result is a consequence of the following one, see [1] and references therein.




          Theorem. If a compact set $Asubsetmathbb{R}^n$ has non-$sigma$-finite measure $mathcal{H}^beta$, then there us a
          subset $Bsubset A$ such that $0<mathcal{H}^beta<infty$.




          [1] R.O. Davies,
          A theorem on the existence of non-σ-finite subsets.
          Mathematika 15 (1968), 60–62.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 4 hours ago

























          answered 4 hours ago









          Piotr HajlaszPiotr Hajlasz

          9,75843873




          9,75843873








          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            4 hours ago








          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            4 hours ago












          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            3 hours ago














          • 2




            $begingroup$
            I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
            $endgroup$
            – Skeeve
            4 hours ago








          • 1




            $begingroup$
            @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
            $endgroup$
            – Piotr Hajlasz
            4 hours ago












          • $begingroup$
            @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
            $endgroup$
            – Severin Schraven
            3 hours ago








          2




          2




          $begingroup$
          I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
          $endgroup$
          – Skeeve
          4 hours ago






          $begingroup$
          I actually have a question (which is the reason why I wrote that my answer is partial): in the OP it is assumed that $A$ is Lebesgue measurable. Strictly saying this does not imply that $A$ is Borel, so it is not immediate that the result we both eventually refer to can be used (if $A$ were Borel or at least Souslin then yes).
          $endgroup$
          – Skeeve
          4 hours ago






          1




          1




          $begingroup$
          @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
          $endgroup$
          – Piotr Hajlasz
          4 hours ago






          $begingroup$
          @Skeeve Good point. I do not know what happens in general, but perhaps the compact case is sufficient for the needs of OP. Let's hear from him. I will changes my answer to emphasize that it only answers the compact case. By the way you know a lot of geometric measure theory so you should be more active :) There are not too many of us.
          $endgroup$
          – Piotr Hajlasz
          4 hours ago














          $begingroup$
          @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
          $endgroup$
          – Severin Schraven
          3 hours ago




          $begingroup$
          @PiotrHajlasz Indeed, the compact case is fine for me. Thanks for the answer.
          $endgroup$
          – Severin Schraven
          3 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325532%2fexistence-of-subset-with-given-hausdorff-dimension%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Loup dans la culture

          How to solve the problem of ntp “Unable to contact time server” from KDE?

          ASUS Zenbook UX433/UX333 — Configure Touchpad-embedded numpad on Linux