Prove that a cyclic group with only one generator can have at most 2 elements
$begingroup$
Prove that a cyclic group that has only one generator has at most $2$ elements.
I want to know if my proof would be valid:
Suppose $G$ is a cyclic group and $g$ is its only generator. Let $|G|=n$ where $n>2$, then we know that $gcd(n,n-1)=1$. This implies that $g^{n-1}$ is a generator of $G$. We have a contradiction, since $g$ is the only generator of $G$ (and $n > 2$ leads to $n-1 neq 1$). Thus $|G|leq 2$.
I tried to use the fact that generating elements of a group are coprime to the order of the group, thanks.
abstract-algebra greatest-common-divisor cyclic-groups
New contributor
$endgroup$
add a comment |
$begingroup$
Prove that a cyclic group that has only one generator has at most $2$ elements.
I want to know if my proof would be valid:
Suppose $G$ is a cyclic group and $g$ is its only generator. Let $|G|=n$ where $n>2$, then we know that $gcd(n,n-1)=1$. This implies that $g^{n-1}$ is a generator of $G$. We have a contradiction, since $g$ is the only generator of $G$ (and $n > 2$ leads to $n-1 neq 1$). Thus $|G|leq 2$.
I tried to use the fact that generating elements of a group are coprime to the order of the group, thanks.
abstract-algebra greatest-common-divisor cyclic-groups
New contributor
$endgroup$
$begingroup$
Your proof is correct (modulo a few details I've corrected -- e.g., $gcdleft(n,n-1right)$ has nothing to do with $n>2$).
$endgroup$
– darij grinberg
54 mins ago
add a comment |
$begingroup$
Prove that a cyclic group that has only one generator has at most $2$ elements.
I want to know if my proof would be valid:
Suppose $G$ is a cyclic group and $g$ is its only generator. Let $|G|=n$ where $n>2$, then we know that $gcd(n,n-1)=1$. This implies that $g^{n-1}$ is a generator of $G$. We have a contradiction, since $g$ is the only generator of $G$ (and $n > 2$ leads to $n-1 neq 1$). Thus $|G|leq 2$.
I tried to use the fact that generating elements of a group are coprime to the order of the group, thanks.
abstract-algebra greatest-common-divisor cyclic-groups
New contributor
$endgroup$
Prove that a cyclic group that has only one generator has at most $2$ elements.
I want to know if my proof would be valid:
Suppose $G$ is a cyclic group and $g$ is its only generator. Let $|G|=n$ where $n>2$, then we know that $gcd(n,n-1)=1$. This implies that $g^{n-1}$ is a generator of $G$. We have a contradiction, since $g$ is the only generator of $G$ (and $n > 2$ leads to $n-1 neq 1$). Thus $|G|leq 2$.
I tried to use the fact that generating elements of a group are coprime to the order of the group, thanks.
abstract-algebra greatest-common-divisor cyclic-groups
abstract-algebra greatest-common-divisor cyclic-groups
New contributor
New contributor
edited 54 mins ago
darij grinberg
11.3k33164
11.3k33164
New contributor
asked 1 hour ago
PabloPablo
211
211
New contributor
New contributor
$begingroup$
Your proof is correct (modulo a few details I've corrected -- e.g., $gcdleft(n,n-1right)$ has nothing to do with $n>2$).
$endgroup$
– darij grinberg
54 mins ago
add a comment |
$begingroup$
Your proof is correct (modulo a few details I've corrected -- e.g., $gcdleft(n,n-1right)$ has nothing to do with $n>2$).
$endgroup$
– darij grinberg
54 mins ago
$begingroup$
Your proof is correct (modulo a few details I've corrected -- e.g., $gcdleft(n,n-1right)$ has nothing to do with $n>2$).
$endgroup$
– darij grinberg
54 mins ago
$begingroup$
Your proof is correct (modulo a few details I've corrected -- e.g., $gcdleft(n,n-1right)$ has nothing to do with $n>2$).
$endgroup$
– darij grinberg
54 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Perhaps easier: if $g$ generates $G$, then so does $g^{-1}$. The hypothesis then implies that $g=g^{-1}$, so $g^2=1$. Done (either $g=1$ or not, in which case respectively the order of $G$ is $1$ or $2$).
$endgroup$
add a comment |
$begingroup$
Here is another take.
The number of generators is $phi(n)$, where $phi$ is Euler's function.
Now, $n$ has a prime factor $pge 3$ or $n$ is a power of $2$.
In the first case, we have $phi(n) ge phi(p)=p-1ge2$.
In the second case, if $nge 3$, then $4$ divides $n$ and so $phi(n) ge phi(4)=2$.
Bottom line, $phi(n)=1$ implies $n$ is a power of $2$ less than $4$, that is, $n=1$ or $n=2$.
(The key fact is this: if $d$ divides $n$, then $phi(n) ge phi(d)$, because if $x$ is coprime with $n$, then $x$ is coprime with $d$.)
$endgroup$
add a comment |
$begingroup$
Your proof is correct if $G$ is finite, i.e. $Gcongmathbb{Z}_m$ for some $mge 1$. Just notice that it may happen that $Gcongmathbb{Z}$; however, in this case $g$ and $g^{-1}$ are distinct generators and this concludes the proof.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Pablo is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3119533%2fprove-that-a-cyclic-group-with-only-one-generator-can-have-at-most-2-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Perhaps easier: if $g$ generates $G$, then so does $g^{-1}$. The hypothesis then implies that $g=g^{-1}$, so $g^2=1$. Done (either $g=1$ or not, in which case respectively the order of $G$ is $1$ or $2$).
$endgroup$
add a comment |
$begingroup$
Perhaps easier: if $g$ generates $G$, then so does $g^{-1}$. The hypothesis then implies that $g=g^{-1}$, so $g^2=1$. Done (either $g=1$ or not, in which case respectively the order of $G$ is $1$ or $2$).
$endgroup$
add a comment |
$begingroup$
Perhaps easier: if $g$ generates $G$, then so does $g^{-1}$. The hypothesis then implies that $g=g^{-1}$, so $g^2=1$. Done (either $g=1$ or not, in which case respectively the order of $G$ is $1$ or $2$).
$endgroup$
Perhaps easier: if $g$ generates $G$, then so does $g^{-1}$. The hypothesis then implies that $g=g^{-1}$, so $g^2=1$. Done (either $g=1$ or not, in which case respectively the order of $G$ is $1$ or $2$).
answered 1 hour ago
MPWMPW
30.1k12056
30.1k12056
add a comment |
add a comment |
$begingroup$
Here is another take.
The number of generators is $phi(n)$, where $phi$ is Euler's function.
Now, $n$ has a prime factor $pge 3$ or $n$ is a power of $2$.
In the first case, we have $phi(n) ge phi(p)=p-1ge2$.
In the second case, if $nge 3$, then $4$ divides $n$ and so $phi(n) ge phi(4)=2$.
Bottom line, $phi(n)=1$ implies $n$ is a power of $2$ less than $4$, that is, $n=1$ or $n=2$.
(The key fact is this: if $d$ divides $n$, then $phi(n) ge phi(d)$, because if $x$ is coprime with $n$, then $x$ is coprime with $d$.)
$endgroup$
add a comment |
$begingroup$
Here is another take.
The number of generators is $phi(n)$, where $phi$ is Euler's function.
Now, $n$ has a prime factor $pge 3$ or $n$ is a power of $2$.
In the first case, we have $phi(n) ge phi(p)=p-1ge2$.
In the second case, if $nge 3$, then $4$ divides $n$ and so $phi(n) ge phi(4)=2$.
Bottom line, $phi(n)=1$ implies $n$ is a power of $2$ less than $4$, that is, $n=1$ or $n=2$.
(The key fact is this: if $d$ divides $n$, then $phi(n) ge phi(d)$, because if $x$ is coprime with $n$, then $x$ is coprime with $d$.)
$endgroup$
add a comment |
$begingroup$
Here is another take.
The number of generators is $phi(n)$, where $phi$ is Euler's function.
Now, $n$ has a prime factor $pge 3$ or $n$ is a power of $2$.
In the first case, we have $phi(n) ge phi(p)=p-1ge2$.
In the second case, if $nge 3$, then $4$ divides $n$ and so $phi(n) ge phi(4)=2$.
Bottom line, $phi(n)=1$ implies $n$ is a power of $2$ less than $4$, that is, $n=1$ or $n=2$.
(The key fact is this: if $d$ divides $n$, then $phi(n) ge phi(d)$, because if $x$ is coprime with $n$, then $x$ is coprime with $d$.)
$endgroup$
Here is another take.
The number of generators is $phi(n)$, where $phi$ is Euler's function.
Now, $n$ has a prime factor $pge 3$ or $n$ is a power of $2$.
In the first case, we have $phi(n) ge phi(p)=p-1ge2$.
In the second case, if $nge 3$, then $4$ divides $n$ and so $phi(n) ge phi(4)=2$.
Bottom line, $phi(n)=1$ implies $n$ is a power of $2$ less than $4$, that is, $n=1$ or $n=2$.
(The key fact is this: if $d$ divides $n$, then $phi(n) ge phi(d)$, because if $x$ is coprime with $n$, then $x$ is coprime with $d$.)
answered 28 mins ago
lhflhf
165k10171396
165k10171396
add a comment |
add a comment |
$begingroup$
Your proof is correct if $G$ is finite, i.e. $Gcongmathbb{Z}_m$ for some $mge 1$. Just notice that it may happen that $Gcongmathbb{Z}$; however, in this case $g$ and $g^{-1}$ are distinct generators and this concludes the proof.
$endgroup$
add a comment |
$begingroup$
Your proof is correct if $G$ is finite, i.e. $Gcongmathbb{Z}_m$ for some $mge 1$. Just notice that it may happen that $Gcongmathbb{Z}$; however, in this case $g$ and $g^{-1}$ are distinct generators and this concludes the proof.
$endgroup$
add a comment |
$begingroup$
Your proof is correct if $G$ is finite, i.e. $Gcongmathbb{Z}_m$ for some $mge 1$. Just notice that it may happen that $Gcongmathbb{Z}$; however, in this case $g$ and $g^{-1}$ are distinct generators and this concludes the proof.
$endgroup$
Your proof is correct if $G$ is finite, i.e. $Gcongmathbb{Z}_m$ for some $mge 1$. Just notice that it may happen that $Gcongmathbb{Z}$; however, in this case $g$ and $g^{-1}$ are distinct generators and this concludes the proof.
answered 23 mins ago
LBJFSLBJFS
456
456
add a comment |
add a comment |
Pablo is a new contributor. Be nice, and check out our Code of Conduct.
Pablo is a new contributor. Be nice, and check out our Code of Conduct.
Pablo is a new contributor. Be nice, and check out our Code of Conduct.
Pablo is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3119533%2fprove-that-a-cyclic-group-with-only-one-generator-can-have-at-most-2-elements%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your proof is correct (modulo a few details I've corrected -- e.g., $gcdleft(n,n-1right)$ has nothing to do with $n>2$).
$endgroup$
– darij grinberg
54 mins ago