Coumarine
Coumarine | |||
Identification | |||
---|---|---|---|
Nom UICPA | 1-benzopyrane-2-one | ||
Synonymes | 2H-chromenone | ||
No CAS | |||
NoECHA | 100.001.897 | ||
No CE | 202-086-7 | ||
PubChem | |||
SMILES | C1=CC=C2C(=C1)C=CC(=O)O2 , | ||
InChI | InChI : InChI=1/C9H6O2/c10-9-6-5-7-3-1-2-4-8(7)11-9/h1-6H | ||
Apparence | flocons incolores, d'odeur caractéristique[1]. | ||
Propriétés chimiques | |||
Formule brute | C9H6O2 [Isomères] | ||
Masse molaire[2] | 146,1427 ± 0,0082 g/mol C 73,97 %, H 4,14 %, O 21,9 %, | ||
Propriétés physiques | |||
T° fusion | 69 à 71 °C[3] | ||
T° ébullition | 301,7 °C[3] | ||
Solubilité | Faible (1,9 g·l-1 à 20 °C)[3] | ||
Masse volumique | 0,94 g·cm-3[1] | ||
Point d’éclair | 150 °C[1] | ||
Pression de vapeur saturante | à 106 °C : 0,13 kPa[1] | ||
Précautions | |||
Directive 67/548/EEC | |||
Xn Symboles : Xn : Nocif Phrases R : R22 : Nocif en cas d’ingestion. Phrases S : S36 : Porter un vêtement de protection approprié. Phrases R : 22, Phrases S : 36, | |||
Transport | |||
Numéro ONU : 2811 : SOLIDE ORGANIQUE TOXIQUE, N.S.A. | |||
Classification du CIRC | |||
Groupe 3 : Inclassable quant à sa cancérogénicité pour l'Homme[4] | |||
Écotoxicologie | |||
DL50 | 0,196 g·kg-1 (souris, oral)[3] 0,293 g·kg-1 (rats, oral)[3] | ||
LogP | 1,39[1] | ||
Considérations thérapeutiques | |||
Classe thérapeutique | Anticoagulant | ||
Composés apparentés | |||
Isomère(s) | isocoumarine chromone | ||
Unités du SI et CNTP, sauf indication contraire. | |||
modifier |
La coumarine est une substance naturelle organique aromatique connue dans la nomenclature internationale comme 2H-1-benzopyrane-2-one qui peut être considérée en première approximation comme une lactone de l’acide 2-hydroxy-Z-cinnamique. Son odeur de foin fraîchement coupé a attiré l'attention des parfumeurs sur elle dès le XIXe siècle.
Le même terme de coumarine désigne aussi la classe des composés phénoliques dérivés de cette dernière molécule, la 2H-1-benzopyrane-2-one. Ces composés possèdent des hydroxyles phénoliques qui peuvent être méthylés ou être engagés dans des liaisons hétérosides, ils constituent alors la génine. Plus d’un millier de coumarines naturelles ont été décrites. Elles sont très largement distribuées dans le règne végétal.
La coumarine utilisée en parfumerie (Shalimar de Guerlain ou Contradiction de Calvin Klein) ou pour aromatiser les aliments ou les boissons est surtout obtenue par synthèse.
Sommaire
1 Étymologie
2 Coumarine simple
2.1 Plantes riches en coumarine
2.2 Propriétés physico-chimiques
2.3 Absorption et métabolisme chez l'homme
2.4 Usage en médecine
2.5 Usage alimentaire
2.6 Autres usages
3 Coumarines
4 Notes et références
5 Voir aussi
Étymologie |
La coumarine tire son nom de kumarú, le nom dans une langue amérindienne tupi de Guyane de l’arbre poussant en Amérique tropicale, le gaïac de Cayenne (Dipteryx odorata) de la famille des Fabacées, donnant la fève tonka, d’où cette molécule, concentrée à 1-3 %, fut isolée en 1820 par Vogel[5]. Le nom de tonka vient aussi du tupi et d’une langue caraïbe de Guyane, le kali'na (ou galibi)[6].
Coumarine simple |
La coumarine fut l'une des premières synthèse aromatiques réalisées vers la fin du XIXe siècle (1868) par le chimiste anglais William H. Perkin. Quelques années plus tard, en 1882, Paul Parquet (en) employa cette molécule de synthèse pour créer Fougère royale, un parfum de la maison éponyme fondée en 1775 par Jean-François Houbigant (devenu H pour homme), puis Aimé Guerlain l'utilisa pour Jicky, en 1889. Ces usages marquèrent un tournant dans l’histoire des parfums et arômes de synthèse.
Elle est depuis peu réglementée pour des raisons d'hépatotoxicité[7].
Plantes riches en coumarine |
La coumarine est présente dans divers végétaux[8],[9] :
- la fève tonka, fruit du gaïac de Cayenne (Dipteryx odorata) de la famille des Fabacées, est très riche en coumarine (de 1 à 3,5 %). À maturité, la fève libère des arômes de vanille, de foin et d’amande. Elle est en vogue auprès de quelques grands chefs qui l’utilisent pour parfumer les crèmes et les gâteaux[10]. Elle servait à aromatiser certains tabacs à pipe comme l'Amsterdamer.
- l’aspérule odorante, (Galium odoratum) ou gaillet odorant (de la famille des Rubiacées), est peu odorante à l'état frais mais prend au séchage une agréable senteur de foin, due au développement de la coumarine (la plante sèche comporte de 1,0 à 1,3 % de coumarine) ;
- la racine de la flouve odorante (Anthoxanthum odoratum) ou « chiendent odorant » (de la famille des Graminées) ;
- la mélitte à feuille de mélisse continent de la coumarine dans les feuilles et fleurs fraîches ;
- la cannelle de Chine (Cinnamomum aromaticum) ou casse est riche en coumarine[11] (0,45 %) et en aldéhyde cinnamique (2,56 %) et contient des traces d’eugénol alors que l’inverse est vrai de la cannelle de Ceylan (Cinnamomum verum) ;
- les tiges feuillées du mélilot officinal ou mélilot jaune (Melilotus officinalis de la famille des Fabacées) renferme, surtout dans les jeunes feuilles, du mélilotoside, glucoside de l'acide 2-hydroxycinnamique qui conduit par lactonisation à la coumarine (0,2 %) ;
- la feuille de maïs (Zea mays) avec 0,2 % est aussi riche ;
- la lavande vraie (Lavandula angustifolia) avec 0,15 % est beaucoup plus riche que la lavande aspic (Lavandula latifolia) qui n’en contient que 0,0022 % ;
- l'angélique officinale (Angelica archangelica) renferme de nombreuses coumarines : simples, furaniques et hydroxy-isopropyldihydrofuraniques ;
- la berce du Caucase (Heracleum mantegazzianum) cause de graves réactions phototoxiques par contact en raison de la présence de furanocoumarines linéaires (psoralène, bergaptène et xanthotoxine, voir la dernière section sur les coumarines). Le céleri (Apium graveolens), le panais (Pastinaca sativa), la grande berce (Heracleum sphondylium) ou la rue (Ruta graveolens) peuvent également générer des réactions phototoxiques par contact chez des sujets sensibles ;
- la vanille Pompona a pour principale molécule aromatique la coumarine, lui conférant des notes de réglisse et de feuille de tabac.
La coumarine simple dégage une agréable odeur, rappelant la vanilline et contribue à l'odeur de foin coupé.
Fèves tonka
Aspérule odorante
Heracleum mantegazzianum
Propriétés physico-chimiques |
- Hydrosolubilité : faible (1,9 g par l d'eau froide et 20 g/l d'eau portée à ébullition).
- Soluble dans les alcools et dans les solvants organiques comme l'éther diéthylique ou les solvants chlorés.
Cristallographie : solide formé de cristaux orthorhombiques.
Absorption et métabolisme chez l'homme |
Pour Lake (1999)[12], la source principale de coumarine dans l’alimentation viendrait de la cannelle souvent présente sous forme d’arôme alimentaire. Il estime l'exposition journalière par l'alimentation à 0,02 mg·kg-1·j-1.
Après ingestion, la coumarine est rapidement et complètement absorbée dans le tube digestif puis massivement métabolisée dans le foie. Elle y subit principalement une hydroxylation en 7-hydroxycoumarine 7-HC (pour 84 %) et une ouverture du cycle de la lactone, avant d’être en grande partie excrétée dans les 24 heures, par voie rénale (voir figure 1). Son temps de demi-vie dans l'organisme humain est d’une heure.
Chez l’homme, la voie par la 7-hydroxylation est très largement majoritaire et donne des métabolites peu toxiques : la 7-hydroxycoumarine et ses conjugués glucuronidés et sulfatés. Par contre, chez le rat et la souris, aucune 7-HC n’est détectée dans ses urines après une ingestion de coumarine et l’autre voie produit des composés très toxiques[13]pour le foie et les reins : voie de la 3,4-époxydation. Il est important de savoir, que certaines personnes avec une activité du cytochrome P450 (enzyme qui métabolise la coumarine en 7-hydroxycoumarine) peuvent métaboliser plus majoritairement la coumarine par la voie de la 3,4-époxydation (voie cytotoxique qui conduit à la o-HPAA), ce qui peut entrainer une toxicité hépatique et rénale.
Usage en médecine |
En médecine, la coumarine est utilisée dans le traitement adjuvant du lymphœdème post-mastectomie, en complément des méthodes de contention. Son action anti-œdémateuse résulte de l'augmentation du drainage lymphatique et de la stimulation de l'activité protéolytique des macrophages[14].
Mais la multiplication des cas d’hépatite chez les patients traités à fortes doses avec cette molécule a conduit au retrait du marché de la spécialité correspondante[9],[13].
La coumarine reste utilisée en phytothérapie, mais à des doses beaucoup plus faibles, comme dans les spécialités contenant du mélilot.
À la différence de ses dérivés (comme la warfarine), la coumarine elle-même n’a pas d’activité anticoagulante.
Mais la fermentation humide de foin qui renferme de la coumarine (en raison de la présence de mélilot) génère des dérivés anticoagulants, qui entraînent des hémorragies chez les herbivores qui en consomment. Le 4-hydroxy-3-[1-(4-nitrophényl)-3-oxobutyl]coumarine, appelé usuellement acénocoumarol, est antagoniste de la vitamine K et inhibiteur de la synthèse des facteurs de la coagulation vitamino-K-dépendants. Ses propriétés anticoagulantes sont utilisées dans la thérapie des maladies thromboemboliques.
Usage alimentaire |
Le codex alimentarius a recommandé en 1985 (réaffirmé en 2006[15]) de ne pas ajouter la coumarine telle quelle aux aliments et aux boissons. Elle peut être présente dans les aliments et les boissons seulement sous la forme de préparations aromatisantes naturelles (par exemple l'extrait de fève tonka) et pas à plus de 2 mg·kg-1 dans les denrées alimentaires et les boissons et de 10 mg·kg-1 dans les caramels spéciaux[16]. En 2004 puis en juillet 2008, l’Autorité européenne de sécurité des aliments (AESA) a recommandé une dose journalière acceptable (DJA) de 0,1 mg de coumarine/kg de poids corporel[17]. Un calcul simple permet de s’apercevoir que la DJA est très largement dépassée par une cuillerée à café de cannelle de Chine[18]. D'où l'importance de bien distinguer cette cannelle de la cannelle de Ceylan, indemne de coumarine.
En cuisine, les fleurs d'aspérule odorante, au parfum caractéristique, sont utilisées dans la région d'Arlon (Belgique) pour la fabrication du Maitrank.
Enfin la coumarine est fortement contenue dans l'herbe de bison, une plante utilisée notamment pour la fabrication de la vodka polonaise Żubrówka. Cette vodka a d'ailleurs été interdite à la vente aux États-Unis pour cette raison en 1978.
Autres usages |
L'odeur de foin fraîchement coupé de la coumarine est très utilisée en parfumerie. Actuellement, elle entre dans la composition de 90 % des parfums (dans 60 % avec une teneur supérieure à 1 %)[19]. Elle s'associe bien à la vanilline dont elle atténue le côté alimentaire.
Elle est aussi utilisée dans les produits cosmétiques (déodorants, eaux de toilette, crèmes, shampoings, savons de toilette, dentifrice, etc.).
On trouve aussi de la coumarine dans les cigarettes indiennes, les bidî, et les cigarettes aux clous de girofle indonésiennes, les kreteks
[20].
Pour neutraliser ou masquer les mauvaises odeurs, la coumarine est aussi ajoutée aux peintures, insecticides, encres, aux aérosols, au caoutchouc ou aux matières plastiques[12].
Coumarines |
La famille des coumarines est formée des composés phénoliques dérivés de la coumarine simple, la 2H-1-benzopyrane-2-one, molécule elle-même dénuée de groupe hydroxyle phénolique OH. Toutes les coumarines sont substituées en C-7 par un hydroxyle phénolique.
Les divers groupes hydroxyles en C-6, C-7 et C-8, peuvent ensuite
- être méthylés
Les coumarines aglycones | ||||
R6 | R7 | R8 | Formules | |
---|---|---|---|---|
Coumarine (non phénolique) | H | H | H | |
Ombelliférone | H | OH | H | |
Herniarine | H | OCH3 | H | |
Esculétol | OH | OH | H | |
Scopolétol | OCH3 | OH | H | |
Scopanone | OCH3 | OCH3 | H | |
Fraxétol | OCH3 | OH | OH |
Le scopolétol est très répandu dans les enveloppes des graines où il inhibe la germination.
- ou être engagés dans une liaison hétéroside[9].
Quelques glucosides de coumarine Gluc= β-D-glucopyranosyloxy | |||||
CAS | synonyme | R6 | R7 | R8 | |
---|---|---|---|---|---|
Skimmine | 7-O-glucosyl-ombelliférone | H | Gluc | H | |
Esculoside | 6-O-glucosyl-esculétol | Gluc | OH | H | |
Cichoriine | 7-O-glucosyl-esculétol | OH | Gluc | H | |
Scopoline | 7-O-Glucosyl-6-méthoxycoumarine | OCH3 | Gluc | H |
L'esculoside, présente dans l'écorce du marronnier d'Inde, est réputée veinotonique.
Esculoside
Cichoriine
Ces molécules peuvent aussi être associées avec des chaînes isopréniques en C5, C10 (monoterpènes) ou plus rarement C15 (sesquiterpènes).
Prényloxycoumarines | |||||
CAS | synonyme | R6 | R7 | R8 | |
---|---|---|---|---|---|
Auraptène | 7-géranyloxy coumarine | H | O-géranyl | H | |
Subérosine | 7-méthoxy-6-(3-méthyl-2-butényl)-coumarine | amylènyl | OCH3 | H | |
Osthol | 7-méthoxy-8-(3-méthyl-2-butényl)-coumarine | H | OCH3 | amylènyl |
Auraptène
Subérosine
Les zestes d'agrumes sont très riches en auraptène.
La fusion de la coumarine avec un hétérocycle supplémentaire à 5 ou 6 atomes donnent deux nouvelles classes[9] :
- les furanocoumarines :
- composés formés par la fusion d'un hétérocycle furane avec la coumarine et ses dérivés. L'association peut se faire
- soit dans le prolongement de la coumarine (forme linéaire) : psoralène et ses dérivés (bergaptène, impératorine, xanthotoxine, chalepensine)
- soit sur le côté (forme angulaire) : angélicine et ses dérivés
Psoralène
Bergaptène
Angélicine
- les pyranocoumarines :
- composés formés par la fusion d'un hétérocycle pyrane avec la coumarine
- soit dans le prolongement (forme linéaire) : xanthylétine
- soit latéralement (forme angulaire) : séseline, visnadine
Xanthylétine
Séseline
Les furanocoumarines linéaires (psoralène, bergaptène, xanthotoxine) sont phototoxiques par contact. Elles peuvent provoquer des dermatites chez les personnes manipulant les plantes qui en contiennent comme le céleri, le persil, le panais, ou les agrumes. Certains agriculteurs peuvent se voir contraint d'abandonner leur activité.
L'assemblage de la coumarine et de trois hétérocycles de furanes donne des aflatoxines, toxines produites par des moisissures au pouvoir cancérigène élevé.
Enfin, un anticoagulant très utilisé en thérapeutique, la warfarine ou coumadine est un dérivé de synthèse de la bishydroxycoumarine.
Notes et références |
COUMARINE, fiche(s) de sécurité du Programme International sur la Sécurité des Substances Chimiques, consultée(s) le 9 mai 2009
Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
(en) ChemIDplus, « Coumarin - RN: 91-64-5 », sur chem.sis.nlm.nih.gov, U.S. National Library of Medicine (consulté le 23 juillet 2008)
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, « Evaluations Globales de la Cancérogénicité pour l'Homme, Groupe 3 : Inclassables quant à leur cancérogénicité pour l'Homme », sur http://monographs.iarc.fr, CIRC, 16 janvier 2009(consulté le 22 août 2009)
'
(en) George S. Clark, « Coumarin », Perfumer & Flavorist, vol. 20, 1995, p. 23-34
Spice
« efsa, Avis du groupe scientifique sur les additifs alimentaires, les arômes, les auxiliaires technologiques et les matériaux en contact avec les aliments (AFC) sur la coumarine »(Archive • Wikiwix • Archive.is • Google • Que faire ?) (consulté le 17 juin 2017)
« http://www.ars-grin.gov/cgi-bin/duke/highchem.pl »(Archive • Wikiwix • Archive.is • Google • Que faire ?) (consulté le 17 juin 2017)
Bruneton, J., Pharmacognosie - Phytochimie, plantes médicinales, 4e éd., revue et augmentée, Paris, Tec & Doc - Éditions médicales internationales, 2009, 1288 p. (ISBN 978-2-7430-1188-8)
Papilles et Pupilles
(en) Alan W. Archer, « Determination of cinnamaldehyde, coumarin and cinnamyl alcohol in cinnamon and cassia by high-performance liquid chromatography », Journal of Chromatography, vol. 447, 1988, p. 272-276
(en) B.G. Lake, « Coumarin Metabolism, Toxicity and Carcinogenicity: Relevance for Human Risk Assessment », Food and Chemical Toxicology, no 37, 1999, p. 423-453
(en) S.P. Felter, J.D. Vassallo, B.D. Carlton, G.P. Daston, « A safety assessment of coumarin taking into account species-specificity of toxicokinetics », Food and Chemical Toxicology, vol. 44, 2006, p. 462-475 (ISSN 0278-6915)
(en) Casley-Smith JR, Morgan RG, Piller NB, « Treatment of lymphedema of the arms and legs with 5,6-benzo-[alpha]-pyrone. », The New England journal of medicine, vol. 329, no 16, 1993(lire en ligne)
[PDF] Commission du Codex Alimentarius (2006) PROGRAMME MIXTE FAO/OMS SUR LES NORMES ALIMENTAIRES COMITÉ DU CODEX SUR LES ADDITIFS ALIMENTAIRES. Trente-neuvième session CX/FA 07/39/12, p1-11.
[PDF] Commission du Codex Alimentarius (1985) « PRESCRIPTIONS GÉNÉRALES POUR LES ARÔMES NATURELS »(Archive • Wikiwix • Archive.is • Google • Que faire ?) (consulté le 17 juin 2017) CAC/GL 29-1987, p1-7.
Coumarin in flavourings and other food ingredients with flavouring properties - Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). doi:10.2903/j.efsa.2008.793
avec 4 500 mg·kg-1 de coumarine dans cette cannelle, une cuillérée à café en contient 12,4 mg et la DJA d’une personne de 70 kg est de 7 mg
CNRS
* (en) Gregory M. Polzin, Stephen B. Stanfill, Candace R. Brown, David L. Ashley, Clifford H. Watson, « Determination of eugenol, anethole, and coumarin in the mainstream cigarette smoke of Indonesian clove cigarettes », Food and Chemical Toxicology, vol. 45, no 10, 2007, p. 1948-1953 (ISSN 0278-6915)
- (en) S.B. Stanfill, A.M. Calafat, C.R. Brown, G.M. Polzin, J.M. Chiang, C.H. Watson, D.L. Ashley, « Concentrations of nine alkenylbenzenes, coumarin, piperonal and pulegone in Indian bidi cigarette tobacco », Food and Chemical Toxicology, vol. 41, 2003, p. 303-317
Voir aussi |
- Chromone
Fève tonka, Cannelle (écorce)
- Aflatoxine
- Portail de la biologie
- Portail de la biochimie
- Portail de la chimie
- Portail des odeurs, des senteurs et du parfum