Integration of two exponential multiplied by each other
$begingroup$
I am having confusion on how to go about integrating this integral:
$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$
I attempted by using integration by parts but that didn't work.
integration
$endgroup$
add a comment |
$begingroup$
I am having confusion on how to go about integrating this integral:
$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$
I attempted by using integration by parts but that didn't work.
integration
$endgroup$
$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
3 hours ago
add a comment |
$begingroup$
I am having confusion on how to go about integrating this integral:
$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$
I attempted by using integration by parts but that didn't work.
integration
$endgroup$
I am having confusion on how to go about integrating this integral:
$$int[exp( jcdotphicdot x)cdot exp(jcdot kcdot xcdot sin theta)] mathrm dx.$$
I attempted by using integration by parts but that didn't work.
integration
integration
edited 5 hours ago
Thomas Shelby
3,6642525
3,6642525
asked 5 hours ago
articatarticat
213
213
$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
3 hours ago
add a comment |
$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
3 hours ago
$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
3 hours ago
$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
3 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$
$endgroup$
add a comment |
$begingroup$
Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$
$endgroup$
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3126893%2fintegration-of-two-exponential-multiplied-by-each-other%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$
$endgroup$
add a comment |
$begingroup$
Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$
$endgroup$
add a comment |
$begingroup$
Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$
$endgroup$
Recall that $e^acdot e^b=e^{a+b} $. So we can write $$intexp( jcdotphicdot x)cdot exp(jcdot kcdot xcdotsin theta) mathrm dx=intexpleft(( jcdot phi+jcdot kcdotsin theta)xright) mathrm dx=dfrac1 { jcdotphi+jcdot kcdotsin theta}expleft(( jcdot phi+jcdot kcdotsin theta)xright).$$
edited 5 hours ago
answered 5 hours ago
Thomas ShelbyThomas Shelby
3,6642525
3,6642525
add a comment |
add a comment |
$begingroup$
Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$
$endgroup$
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
add a comment |
$begingroup$
Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$
$endgroup$
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
add a comment |
$begingroup$
Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$
$endgroup$
Hint: exponentiation rules. $$exp(acdot x)cdotexp(bcdot x)=exp((a+b)cdot x)$$
answered 5 hours ago
Graham KempGraham Kemp
86.1k43478
86.1k43478
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
add a comment |
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
$begingroup$
exponentiation rules - yes it does
$endgroup$
– qwr
6 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3126893%2fintegration-of-two-exponential-multiplied-by-each-other%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is a bit off-topic, but you might have encountered problems, with integrands like exp(x) * sin(x) where you needed to do two rounds of integration by parts. Using complex exponentials lets you avoid integration by parts in those problems by putting everything in one exponential.
$endgroup$
– Gus
3 hours ago